
The promising results of the pilot study have led to a current study
comparing the MLMF methods on healthy and diseased models, utilizing
more realistic boundary conditions as well as a wider range of both
quantities of interest and uncertain parameters. The advantages of this
method for our application are shown in the graph above right.
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Patient-specific computational cardiovascular models are successfully
employed in a wide range of clinical applications from disease diagnosis,
surgical planning, and medical device design. Results, however, are often
reported as deterministic, neglecting variations that could occur due to
uncertain input parameters. Examples of uncertain input parameters
include noisy and limited resolution medical image data, clinical
measurement of patient data, or population variability in results published
in the literature. Systematic quantification of uncertainties is a necessary
step towards clinical adoption of computational tools.

Additionally, these models often require laborious hand tuning of
parameters to ensure simulation outputs mimic patient-specific behavior.
This time-consuming process requires expert user knowledge, is difficult to
systematically reproduce, and prevents extension of computational tools to
large patient cohorts. We present a suite of efficient and automated tools
for 1) assimilation of uncertain clinical data into lumped parameter
boundary conditions, and 2) propagation of uncertainty to assign
confidence intervals to simulations and predictions.

Patient-specific cardiovascular modeling in the open source software
SimVascular (www.simvascular.org) consists of several steps that start
from medical image data and ends with solving the incompressible Navier-
Stokes equations on a finite element mesh.

First, centerline paths are generated for all vessels of interest. Next, the
vessel cross sections are segmented along these centerline paths. These
segmentations are then lofted together to form a solid model, which is
then typically meshed into tetrahedral finite elements. Boundary conditions
are then applied before solving the incompressible Navier-Stokes. Once the
simulations finish, they can be post-processed to compute hemodynamic
quantities of interest. Typical quantities of interest from these simulations
include pressure, flow, wall shear stress, and wall strain.
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State-of-the-art cardiovascular simulations employ lumped parameter
networks (LPN) to specify boundary conditions. Manual tuning of these
parameters is required to ensure simulations accurately model patient
physiology, but this process is time-consuming, operator dependent, and
prevents extension to large patient cohorts. We thus adopt a Bayesian
perspective, treating inputs as random variables and sampling parameter
sets which produce results consistent with data. We typically use a
combination of patient-specific and literature data, summarized below:

Assuming a Gaussian likelihood function, we sample parameter sets from
the posterior distribution using and adaptive Markov Chain Monte Carlo
(MCMC). We can then use Nelder-Mead optimization of the maximum
posterior parameter estimate to solve for the optimally tuned parameters
which match patient data.

We used this framework to tune the input parameters in seven patients
exhibiting a wide range of different anatomies and physiologic targets, and
matched the data within their specified uncertainty, summarized below for
the maximum aortic pressure, stroke volume, and ejection fraction:

The average percent difference between simulated results and patient
targets was 7.6%, under the average of 14.6% measurement uncertainty.
This framework can also be easily extended to other patient anatomies and
different available data. The samples produced from the MCMC are also
key for forward propagation of uncertainties to model outputs.

This study aims at quantifying uncertainty in two computational results
(viscous wall shear stress and mechanical wall strain) as a result of
uncertainties in the LPN boundary conditions and wall material properties.
We also developed a stochastic submodelling approach to simulate only
our region of interest (bypass grafts) to alleviate the computational burden
of running the many required full multiscale simulations for uncertainty
quantification. This submodelling relies on re-parameterizing the velocities
and pressures of the graft submodel in terms of the full model parameters,
and using sparse regression to compute their relationship. This reduced
the cost of running simulations by over an order of magnitude.

We then used a multi-resolution approach to uncertainty propagation,
which extends the generalized polynomial chaos expansion. We used this
framework to compute output uncertainties for three different patients,
representing a wide range of physiological data and graft geometries.

Analyzing the probability distributions for the wall shear stress (WSS) and
wall strain, we see that WSS is relatively well estimated in the presence of
input uncertainties as there are clear differences in the distributions
between LIMA and SVG grafts. Wall strain, on the other hand, is poorly
estimated with the distributions bleeding into one another. This information
is key for determining which simulated outputs are most reliable to use in
the clinic for affecting patient care.

Our workflow is summarized below:

Monte Carlo approaches will reliably converge to the true value for any
quantity of interest, but the large number of simulations needed for this
convergence is untenable for full model simulations. Multi-level and multi-
fidelity approaches aim to reduce variance compared to that obtained when
using the same number of simulations with Monte Carlo.

A pilot study using three available model fidelities compared the results of
six multilevel (ML), multifidelity (MF) and multilevel-multifidelity (MLMF)
methods, summarized below, to standard Monte Carlo approaches. The full
UQ study currently in progress utilizes the MLMF framework, below far right:
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Three fidelity levels of the same healthy coronary model geometry are shown
below. The Hughes and Lubliner 1D formulation with a linear constitutive
equation is used in our 1D solver, while the 0D model is a full-model LPN.

Uncertainty quantification was performed using steady inlet flow, with ten
resistance boundary conditions, sampled from uniform distributions about
means tuned to physiologic waveforms, as the uncertain parameters. Global
(steady state flow and pressure values at outlets) and local (various WSS
quantities) served as the quantities of interest for the exploratory pilot study.

Solver No. Simulations

3D 100
1D 2000
0D 10 000

Table 1: Simulations of each fidelity

1

C
om

pu
ta

tio
na

l E
xp

en
se

Global Resolution Local Resolution

Lumped parameter 
models

1-D Wave 
Propagation Models

3-D Finite Element 
Models
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The cost of each method, using all simulation results of the pilot study, are
compared in the table below left. Extrapolation was used to determine the
number of simulations of each fidelity level needed to obtain 1% accuracy
for flow at a circumflex artery subbranch outlet, results shown below right.

The accuracy of each quantity of interest for each method is shown in the
graph below left. Accuracy is defined as (6√(Var[Q] ))/E[Q] for each
quantity of interest Q (ratio of confidence interval length to expected value).


